10 research outputs found

    USCID 14th technical conference

    Get PDF
    Presented at Contemporary challenges for irrigation and drainage: proceedings from the USCID 14th technical conference on irrigation, drainage and flood control held on June 3-6, 1998 in Phoenix, Arizona.Metering of farm water deliveries in the Imperial Irrigation District has always been a costly and difficult procedure. Due to existing structural and environmental conditions, many of the traditional methods of metering deliveries had in the past proved cumbersome or unsuccessful. With funding provided by the IID/MWD Water Conservation Program, a method for utilizing ultrasonic transducers for metering farm water deliveries under orifice flow conditions has been developed. These on-farm water level sensors were designed to be portable, environmentally rugged, solar powered, simple to operate and maintain, and visually unobtrusive to minimize vandalism. This paper describes the construction of the on-farm water level sensors and their function as a useful tool in providing rapid and accurate irrigation evaluations to farmers

    Irrigation district sustainability

    Get PDF
    Presented at Irrigation district sustainability - strategies to meet the challenges: USCID irrigation district specialty conference held on June 3-6, 2009 in Reno, Nevada.The Yolo County Flood Control & Water Conservation District (District) releases about 250,000 acre-feet per year from two water supply reservoirs in the Cache Creek watershed for the irrigation of about 60,000 acres of farmland in Yolo County, California. That water is diverted into the Winters Canal and the West Adams Canal at Capay Diversion Dam on Cache Creek. The continued operation of Capay Dam is vital to the sustained future of irrigated agriculture of the District. Urbanization and infrastructure construction in California resulted in extensive sand and gravel extraction from Cache Creek downstream of Capay Dam. Although that mineral extraction ceased many years ago, the streambed of Cache Creek has degraded. Presently the streambed elevation at the toe of Capay Dam is as much as 15 feet below the elevation of the apron of the dam and the dam is at risk due to downstream channel bed degradation and local scour during floods. Capay Dam is a concrete diversion that was constructed in 1915. The main portion of the dam is an overflow section about 475 feet long with low-level sluice gates and service spillways at both abutments. The abutments also contain the headworks for the irrigation canals. Due to streambed degradation, local scour at the toe of the apron and the more than 90-year service life of the structure, the District embarked on a program of dam inspection, including the use of non destructive testing of the concrete, and rehabilitating the dam and headworks so as to continue to provide a sustainable irrigation supply of surface water from Cache Creek. The dam inspection and rehabilitation and betterment program for Capay Diversion Dam is presented. This includes the issues of environmental permitting, stream morphology, sediment transport and historic data collection

    Novel characteristics identified in two cases of feline Cow Pox Virus infection

    Get PDF
    Case series summary This case series discusses novel characteristics identified in two cases of cowpox. One presented with upper airway signs, and was identified to have a focal laryngeal lesion. The other had central neurological signs at the terminal stages, with intracytoplasmic inclusion bodies identified within the cerebral hemispheres on histopathology. Relevance and novel information Currently, cowpox would be an unlikely consideration in patients with neurological signs or upper respiratory noise. These cases both document novel presentations of cowpox infection, which clinicians should be aware of and consider as differential diagnoses in patients with these atypical presentations

    The Folding of Human Active and Inactive Extracellular Superoxide Dismutases Is an Intracellular Event*

    No full text
    Human extracellular superoxide dismutase (EC-SOD) is a tetrameric glycoprotein responsible for the removal of superoxide generated in the extracellular space. Two different folding variants of EC-SOD exist based on the disulfide bridge connectivity, resulting in enzymatically active (aEC-SOD) and inactive (iEC-SOD) subunits. As a consequence of this, the assembly of the EC-SOD tetramers produces molecules with variable activity and may represent a way to regulate the antioxidant level in the extracellular space. To determine whether the formation of these two folding variants is an intra- or extracellular event, we analyzed the biosynthesis in human embryonic kidney 293 cells expressing wild-type EC-SOD. These analyses revealed that both folding variants were present in the intra- and extracellular spaces, suggesting that the formation is an intracellular event. To further analyze the biosynthesis, we constructed mutants with the capacity to generate only aEC-SOD (C195S) or iEC-SOD (C45S). The expression of these suggested that the cellular biosynthetic machinery supported the secretion of aEC-SOD but not iEC-SOD. The coexpression of these two mutants did not affect the expression pattern. This study shows that generation of the EC-SOD folding variants is an intracellular event that depends on a free cysteine residue not involved in disulfide bonding

    Status of the SPIRE photometer data processing pipelines during the early phases of the Herschel mission.

    Get PDF
    We describe the current state of the ground segment of Herschel-SPIRE photometer data processing, approximately one year into the mission. The SPIRE photometer operates in two modes: scan mapping and chopped point source photometry. For each mode, the basic analysis pipeline - which follows in reverse the effects from the incidence of light on the telescope to the storage of samples from the detector electronics - is essentially the same as described pre-launch. However, the calibration parameters and detailed numerical algorithms have advanced due to the availability of commissioning and early science observations, resulting in reliable pipelines which produce accurate and sensitive photometry and maps at 250, 350, and 500 µm with minimal residual artifacts. We discuss some detailed aspects of the pipelines on the topics of: detection of cosmic ray glitches, linearization of detector response, correction for focal plane temperature drift, subtraction of detector baselines (offsets), absolute calibration, and basic map making. Several of these topics are still under study with the promise of future enhancements to the pipelines
    corecore